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Resilience, Data Replication

In a distributed system, applications can perform both reads and updates without costly synchronous network
round-trips by using Conflict-free Replicated Data Types (CRDTs). Most CRDTs are based on some variant
of atomic broadcast, as that enables them to support causal dependencies between updates of multiple objects.
However, the overhead of this atomic broadcast is not really required in systems only having fully independent
CRDT objects. We identified a set of use cases related to resource usage such as text messaging where there
is a need for a replication mechanism of CRDTs with lower code complexity and network usage compared
to using atomic broadcast. In this paper, we present the design of such a replication protocol that efficiently
leverages the commutativity of CRDTs. The proposed protocol CReDiT (CRDT enhanced with intelligence)
uses up to four communication steps per update, which can be batched as needed. When there are no updates,
it uses no network resources at all. Furthermore, it is more resilient to server failures than the state-of-the-art
solutions, as new values are available to the other nodes directly after the first communication step instead of

after two or more.

1 INTRODUCTION

Many distributed systems need to efficiently manage
external resources. These resources could be, e.g.,
network traffic, the number of times to show a spe-
cific web advertisement, and more. In this work, we
will consider an application with one or more users,
each one paying for the resources they use. The pay-
ment can either be made in advance, or afterwards,
based on the actual resource consumption for the past
billing period. Each user has a credit balance, repre-
senting payments made and resources used. This bal-
ance is then used as basis for their next invoice. The
system clearly must take great care in maintain these
credit balances.

Regardless of how reliable modern computer
components have become, occasional server outages
are unavoidable [Aceto et al., 2018|Bailis and Kings-
bury, 2014, Yousif, 2018]. In order to make the
service available despite these server outages, we
need multiple servers [[Cheng et al., 2015/ Rohrer
et al., 2014, Rothnie and Goodman, 1977, |Vass et al.,
2020], preferably independent and geographically
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separated [Dahlin et al., 2003]]. The challenge is then
to maintain accurate records of the resource consump-
tion across all these servers.

One of the earliest works on database replica-
tion is RFC 677 [Johnson and Thomas, 1975|], which
uses increased reliability and efficiency of data access
as the main motivations. To also achieve maximum
availability, the authors conclude that

“«

. a completely general system must deal
with the possibility of communication failures
which cause the network to become parti-
tioned into two or more sub-networks.”

Given the current prevalence of cloud-based sys-
tems, both reliability, efficiency, and availability are
just as important today. However, maintaining con-
sistency in a distributed system can easily lead to de-
creased performance [Didona et al., 2019|], and in
the presence of network partitions, fully distributed
consistency and high availability simply cannot co-
exist [Brewer, 2000} |Gilbert and Lynch, 2004]. An
interesting exception was identified by Alsberg and
Day [Alsberg and Day, 1976], suggesting what is ba-
sically a precursor to Conflict-free Replicated Data
Types (CRDTs) [Shapiro et al., 2011]:

“An example [of a specific exception] is an
inventory system where only increments and



decrements to data fields are permitted and
where instantaneous consistency of the data
base is not a requirement.”

CRDTs have become popular for distributed sys-
tems over the past few years, partly because of their
convenient property of having the same value regard-
less of the order of the operations performed on them.
When instantaneous consistency is not required, local
operations can be performed on them immediately, as
there is no need to wait for time-consuming network
round-trips. The new state, or records of the per-
formed operations, are instead regularly broadcast to
the other nodes. As these reach them, all nodes even-
tually get the same value for the object. A straight-
forward example is the set of integers Z over the op-
eration max (), but a CRDT can also be a collection,
e.g., a set or a tree. There are two main groups of
CRDTs:

State-based CRDTs send their full state [[Carlos Ba-
quero, Paulo Sérgio Almeida, Alcino Cunha,
2017|] between the servers. This makes them im-
mune to both packet loss and packet duplications,
but it can quickly lead to excessive network usage
for data types with a large state, and to massive
storage requirements when there is a high number
of clients [Almeida and Baquero, 2019]]. A spe-
cial case of these are delta-based CRDTs, which
only transmit the part of the state changed by local
updates [Almeida et al., 2018l Enes et al., 2019],
thus reducing the network traffic.

Operation-based CRDTs send only the individual
operations [Baquero et al., 2014} Baquero et al.,
2017]. These typically use less network resources,
but require reliable delivery where all operations
are successfully received by all nodes exactly
once [[Younes et al., 2016].

Even if the operation order on a single CRDT ob-
ject does not matter, many applications update an ob-
ject based on the values of another. For example, a
log entry could be created every time a user’s resource
usage goes above a predefined limit. In order to en-
force such causal dependencies, most CRDT imple-
mentations use reliable causal broadcast (RCB) where
all nodes get the same set of packets in more or less
the same order [Birman and Joseph, 1987} /Schneider
et al., 1984]. RCB is typically based on atomic broad-
cast, which can ensure both that all packets are deliv-
ered in the same order, and that this happens only if
all nodes are still reachable. Atomic broadcast can
be implemented in several ways, requiring a differ-
ent number of messages sent over the network, and
maxing out the CPU and network in different situ-
ations [Urban et al., 2000]. A simple example is

Skeen’s algorithm, which requires a network packet to
be returned to the sender, and then a third set of “com-
mit” [Gotsman et al., 2019] packets to all destinations
from which the sender got the reply. When the causal-
ity check is based only on Lamport clocks [Lamport,
1978], this can give false positives, in turn leading to
unnecessary network traffic and delays [Bauwens and
Boix, 2021]).

The purpose of this work is to find a replica-
tion protocol for state-based CRDTs without any
causal dependencies at all, where the replication
uses less network resources than previously pro-
posed solutions. We use user credits as the moti-
vating example, typically implemented as CRDT PN-
counters [Shapiro et al., 2011]]. In short, a PN-counter
is a pair of integers Z, merged by the operation max (),
where the integers are used for positive and negative
changes, respectively. Its value is the difference of
these two integers. We refer to the paper by Shapiro
et al. for a more detailed description.

Our proposed protocol CReDiT (CRDT enhanced
with intelligence) extends state-based CRDTs by aug-
menting the local state with additional information in
order to avoid unnecessary network traffic, similar to
what Enes et al. [Enes et al., 2019] did for operation-
based CRDTs. All data is periodically resent until it
has been acknowledged by each other node, making
the protocol immune to occasional packet loss.

We will describe this work using Shaw’s frame-
work [Shaw, 2001]], which categorizes research in
three different ways. First is the research setting,
which is what kind of research question or hypoth-
esis is being addressed. In this work, the setting is
Method, described in Section [2} Next is the research
approach. Here the desired result is a new Technique,
described in detail in Section [3] The third way is the
result validation, which is done in Section[d] We dis-
cuss the results in Section [5] present related work in
Section [6} and end the paper with our conclusions in
Section[7l

2 METHOD

In Shaw’s framework [Shaw, 2001, the purpose of
a “Methods/Means” setting is to find an answer to
a research question such as “what is a better way to
accomplish X”. After defining our system model in
Section [2.1} we will therefore define our “X” in Sec-
tion[2.2] and what exactly we mean by “better” in Sec-

tion
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Figure 1: X clients connected to Y nodes, which in turn are
all connected to each other. The nodes maintain a database
of the credit balance for each client.

2.1 System Model

We assume we have a distributed system of indepen-
dently running nodes, communicating over an asyn-
chronous network. The network can use any topol-
ogy, as long as there is at least one path between each
pair of nodes. We further assume fair-lossy links, i.e.,
packets may be dropped, but if a packet is sent in-
finitely often it will eventually be received. Packets
may also be duplicated or reordered. The nodes have
local memory and a stable storage, and can recover af-
ter crashing. We also assume there are some number
of clients, each one connecting to any node or nodes.
As the clients send requests to a node, their resource
counter in that node is updated. Figure |1| shows the
situation with x clients and y nodes. This work ad-
dresses the communication between the nodes, shown
with dashed lines.

2.2 Functional Requirements

The functionality we need, i.e. our “X”, matches al-
most exactly what Almeida and Baquero [Almeida
and Baquero, 2019|] call eventually consistent dis-
tributed counters (ECDCs). These use the increment
operation for updating the counter, and fetch for read-
ing its current value. Fetch returns the sum of updates
made. A second call to fetch returns the previous
value plus any locally made updates since then. Even-
tually, fetch will return the same value on all nodes,
i.e., the above named sum of updates. In addition
to an ECDC, we also allow negative updates, which
means we can count both the resources used and the
payments made.

2.3 Quality Requirements

We also need to specify our quality requirements,
i.e. what we mean by “better”. We base these on
ISO 25010 [ISO/IEC, 2020], a taxonomy which puts
quality attributes into eight different groups of char-
acteristics, each one divided into a handful of sub-
characteristics. The latter are written below in the
form Main characteristic / Sub-characteristic.

The CAP theorem [Brewer, 2000, Gilbert and
Lynch, 2004] tells us that given a network partition,
we cannot have both data consistency and availabil-
ity. With the ISO 25010 nomenclature, this means
we need to choose between Functional Suitability /
Functional Correctness (the needed degree of preci-
sion) and Reliability / Availability. We strongly prior-
itize the latter, as it is usually a good business decision
to let customers keep using your service, even when
facing the risk of occasional overdrafts. Any nega-
tive credit balance can be adjusted afterwards. This
allows us to make balance updates without first mak-
ing a network round-trip to the other nodes to verify
that the result would not be negative.

For the Performance Efficiency / Capacity, we as-
sume the system has up to about 10 nodes, and that
there are up to 1000 clients using its resources. For
now, we do not address the remaining quality charac-
teristics in ISO 25010 [ISO/IEC, 2020].

Assuming that all clients are independent, we can
model the time between each update for each client
using the exponential distribution. This distribution
has the probability density function f(x) = Ae ™™, and
the cumulative distribution function (CDF) P(X <
x) = 1 —e ™. In both functions A is the inverse of
the client specific mean interval yu, and x is the length
of the interval.

This CDF has an interesting property, as it is al-
ways less than 1. In other words, there will always
exist a time interval of length x without any updates.
The lower the value of A, the higher the probability
for this is. If x is measured in seconds, we will have a
repeating sequence of some number of seconds with
updates, and some other number of seconds without.
It would be beneficial if we could avoid sending any
data during these seconds of silence, to lower both
the amount of network traffic and the amount of local
processing on each node.

3 PROPOSED TECHNIQUE

Our proposed protocol is based on PN-
counters [Shapiro et al., 2011], augmented with
data to keep track of the values on the other nodes.
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Figure 2: The three types used by CReDiT.

This data, and how it is used, is described in Sec-
tion 3.1} Section [3.2]describes the protocol as a state
machine, and Section [3.3] shows a sample scenario
in a system with two nodes. The protocol is named
CReDiT, inspired by its basis in CRDT.

3.1 Prototype Implementation

We assume the application has some sort of collec-
tion of resource counters, although each counter will
be managed separately by CReDiT. For the network
communication, CReDiT uses a separate transport
layer. Each counter, named pn_t in our implementa-
tion, contains a map from node identifiers to instances
of the structure entry_t. An entry_t contains the
two fields p and n, just as the original PN-counters.

We extend the entry_t structure with a map from
node identifiers to gr_pn_flags_t structures, contain-
ing the following fields. These fields are therefore
specific for each pair of nodes. The three types are
shown in Figure

sent_at: timestamp
This is the most recent time the current value was
sent to the other node. In our implementation, for
simplicity but without any loss of generality, we
use a resolution of one second for this field.

confirmed: boolean
This is set when the incoming data is identical to
what is stored locally, so we know that we do not
need to send the same data to that node again.

force: boolean
This is set when a value really should be sent on
the next flush, overriding the confirmed flag.

In the function descriptions below, we use A for
the local node where the code is executed, B for one
of the remote nodes, entry for the instance of the
entry_t structure on A, x for a random node, and * to
designate all nodes. The protocol uses the functions
listed below, of which only flush () and receive ()
perform any network operations. We have marked the
original PN-counter functionality with “PN” and our
additions with “New”. All functions perform all their
steps as a single atomic operation, to allow them to be
used directly in multi-threaded applications.

init (x, p, n)
This is used when loading values from external
storage.

PN: It sets entry[x].p and entry[x].n to the
supplied values.

New: It clears the entry[x].flags[*] struc-
tures.

update (delta)
This is called on the local node A, updating the re-
source counter. It corresponds to increment for an
ECDC [Almeida and Baquero, 2019], but allows
both positive and negative modifications.
PN: If the delta is positive, entry[A].p is in-
creased, and if it is negative, entry[A] .n is in-
creased.
New: As we know that node A is the only one
updating the entry[A] fields, no other node has
these exact values now, and we can therefore clear
the entry[A].flags[*].confirmed flags.

fetch()
This function is called by the application to get
the current value of the counter.
PN: It returns the sum of all entry[*].p fields
minus the sum of all entry[*].n fields.

flush()
This should be called regularly by the applica-
tion, in order to initiate the replication to the other
nodes.

PN: It will execute the same logic for all nodes it
knows about, and for all entry_t instances. The
idea is that all nodes should get the full array of
values on all nodes. It does not wait for any replies
from the other nodes.

New: If the force flag is set, the entry is sent.
Otherwise the entry is sent if the confirmed flag
is not set, or if sent_at is different than the cur-
rent time. Afterwards, sent_at is set to the cur-
rent time, and force is set to false.

receive (B, x, p, n)

This function is called by the transport layer,
when new data has been received by node B con-
cerning values on node x (where x can be both A,
B, or another node).

PN: The two fields entry[x] .p and entry[x] .n
are updated to their respective maximum.

New: If the entry[x].flags[B].confirmed
flag is set, entry([x].flags[B].force is set.
If the incoming values differ from the lo-
cal values in any way in the PN step,
the entry[x].flags[*].confirmed ﬂags are
cleared. The entry([x].flags[B].confirmed
flag is always set though, as we know that node B
has these particular values. Finally it makes a call-
back to the application, which can persist the new
data. This persisted data is what the application
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Figure 3: States on a node. Each pair of nodes has its own
state. The black circle is the starting point. For the states
1 and 3, the force flag is set. For the states 2 and 3, the
confirmed flag is set.

should provide to the init () function after being
restarted.

The implementation was based on GeoRep [Brah-
neborg et al., 2020]]. This provided us with network-
ing code and configuration management for keeping
track of the nodes to which data should be replicated.

3.2 State Machine

Figure [3|shows a compact summary of the algorithms
and the effects of the flags. There is a separate state
machine for each individual counter, and for all pairs
of nodes. The state of each machine is an effect of the
node specific flags in entry_t: If the force flag is set
or if the current second (as returned from the time (3)
system function or similar) differs from the value of
the sent_at attribute, the machine is in state 1 or 3.
If the confirmed flag is set, it is in state 2 or 3. Each
counter starts at the filled black circle, and immedi-
ately goes to state 0. This represents the case when
both force and confirmed are false. In all states,
update () and receive () update the corresponding
(p,n) pair(s). All functions described in Section
can be called in any of these four states, but the func-
tions not affecting a particular state are omitted for
clarity.

3.3 Data Flow

Figure[d|shows the data flow between the two nodes A
and B, following the algorithms in Section [3.1] each
one making a single update to a shared counter. The
steps are as follows.

1. The sequence begins by A updating the value of
a new counter with +2. This creates the counter,
and Asetspto2andntoOinentry[A].

2. After at most one second, A moves B to state 2.
On the next call to f1ush () from the upper appli-
cation layer, the values for A are sent to B, after
which A sets entry[B] .sent to now.

3. When B receives this data, it stores A’s values p=2
and n=0, and sets the flags confirmed and force
inentry[A].

4. As Ahas sent =now for B and force is not true,
any additional calls to flush() will not cause
more data to be sent to B.

5. At B, it has force set to true for A, so the next
time flush () is called, the pair p=2 and n=0 for
A is sent back to A.

6. Next, A gets the (2,0) pair for A from B. As
these are the same values it already has, it sets
confirmed to true for B. It does not set force.
After this, both A and B has confirmed set to
true for each other, and agree on the (2,0) pair.
No more data is sent by either side.

7. In the second part of the figure, B updates the
value with —3, adding the pair (0,3) for B.

8. At most one second later, B moves to state 1.
Here, flush() sees that the pair (0,3) does not
have the confirmed flag set (for any host), and
sends it to A.

9. Areceives the (0,3) pair, and sets confirmed and
force, just as node B did earlier in step 3.

10. As force is set, the (0,3) pair is sent back to B
the next time A calls £1ush (). The pair (2,0) for
A still has the confirmed flag set, so it is not sent.

11. B receives the pair (0,3) for B. As in step 6, this
matches what it already has, so it sets confirmed
but not force.

12. Again, both nodes have the same set of values,
agreeing on the total sum. They also know that
the other node has these exact values, so they are
not sent again.

If the data sent in step 2 is lost, A will obviously
not get this data back from B. When f1ush () is called
during the next second or later, it will see the missing
confirmed flag, and send the data again. As we as-
sume fair lossy links as mentioned in Section 2.1} B
will eventually receive this data.

If the reply from B to A in step 5 is lost, B will
still have the confirmed flag set, so it will not send
the data again. However, A will not have this flag set,
so it will send it to B again. B has the confirmed flag
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Figure 4: Protocol running on nodes A and B. The current values for p, n, and the flags, are shown within brackets.

set, so it sets the force flag, causing the data to be
sent back to A by the next call to f1ush ().

The combined effect of the confirmed and force
flags is that any data packet can be lost, and the pro-
tocol will still recover, making sure all nodes have the
same set of values, as well as having confirmed val-
ues from these nodes. After a period without updates,
no more data will be sent until after the next call to
update () for this counter.

4 EVALUATION

We here discuss the validation of the proposed proto-
col regarding its functionality, correctness, and scal-
ability. As both update () and fetch() only work
on local data, the availability is 100% by construction
(albeit limited by the availability of the server itself,
which is beyond our control). Even though we in Sec-
tion [2.3] state that we prioritize availability over cor-
rectness, we therefore do not evaluate the availability.

4.1 Functional Validation

We validated the functionality both manually and with
a test program. The manual validation was done by
first listing the most important events from the per-
spective of some node A, communicating with an-
other node B:

1. Node A makes an update.
2. Node B makes an update.

3. After an update, a packet from node A to node B
is lost.

4. After an update, a packet from node B to node A
is lost.

We then manually examined all 16 possible com-
binations of whether each one of these events hap-
pened, making traces similar to the one in Figure §]
In an earlier version of the protocol, this revealed an
issue when it could not properly recover from a lost
packet, leading to the introduction of the force flag.

Next, we wrote a test program which was run on
3 nodes, on each one generating random sequences of
updates and pauses as described in Section The
updates varied linearly between —2 and 2. It then ver-
ified that final value on all nodes were identical. We



also manually inspected the generated log files, to ver-
ify that nothing unexpected occurred.

One such log file is shown below. It runs on the 3
nodes ams1, ams2, and ams3, each one with 2 client
threads. After each update, the current value on the
node is shown. Finally, after a few seconds of being
idle, they print their final value, which here is 22.

test 2 clients

start on amsl at 10.133.72.149
start on ams2 at 10.133.112.180
start on ams3 at 10.133.112.195

node 1 currently has the value 7

node 2 currently has the value 7

node 2 currently has the value 16
node 1 currently has the value 17
node 3 currently has the value 16
node 3 currently has the value 21
node 2 currently has the value 22
node 1 currently has the value 21
node 3 currently has the value 25

Final value on amsl: 22
Final value on ams2: 22
Final value on ams3: 22

4.2 Correctness Conditions

By construction, a state-based CRDT ensures that all
updates originating on a particular node are done in
the same order on all other nodes as well, as its current
state always includes its previous state. Its commuta-
tivity further ensures that even if the relative order of
updates made on different nodes may differ between
the nodes, the value of a CRDT object will eventually
be the same on all nodes. As this order may differ, we
do not get serializability [Papadimitriou, 1979

Whether we get linearizability [Herlihy and Wing,
1990] is not entirely clear. Herlihy and Wing states
that the “real-time precedence ordering of operations”
should be respected. This is indeed the case on each
particular node. However, in a distributed system with
nodes A and B we can have a sequence such as the
following.

1. A stores the value 1 in variable x.
2. A stores the value 2 in variable x.
3. B reads the value of variable x.
4. B reads the value of variable x.

The data replication from node A to node B may
be initiated both after step 1 and 2. Furthermore, the
new data may arrive to node B both before and after
step 3, as well as after step 4. Node B can therefore
see both the values 1, 2, or something else. Still, if

node B would read the value 2 in step 3, we can guar-
antee that step 4 will not read the value 1 (a.k.a. mono-
tonic reads). Also, if node A would read the value of
variable x, after step 1 it would get 1, and after step 2
it would get 2 (a.k.a. read your writes).

4.3 Scalability

The memory usage for each counter is O(n) for the
values, and O(n?) for the flags. We have no transac-
tion log, so for a given n the memory requirement is
constant.

If there has been an update on node A, up to 4 sets
of network packets are triggered. After these steps,
all n nodes will have the same value, as well as know-
ing that the other n — 1 nodes have it too. Thanks to
having this knowledge, no more data is sent until the
next update is made.

1. Node A sends the updated (p, n) pair to the other
n— 1 nodes.

2. After receiving the new pair, these n — 1 nodes
send back their updated values. For a system with
2 nodes, as in Figure ] no more packets are sent
after this step.

3. For a system with 3 or more nodes, the n — 1 nodes
has at least one set of flags where confirmed is
not set. Therefore £lush () on these nodes will
broadcast the updated value to the remaining n — 2
noded]

4. If a packet in the previous set is received from a
node y on a node x before it has broadcast the up-
date itself, the force flag will be set on node x,
causing the value to again be sent from node x to
node y.

An update will therefore cause a total of up to (n—
D+n-1)+m-1)n-2)+(n—-1)(n-2)=2(n—
1)? network packets to be sent in the system. This
quadratic scale-up makes this protocol unsuitable for
systems with a large number of nodes, even though
the decision for when this is true must be done on
a case by case basis. Furthermore, every lost packet
results in two additional packets being sent.

The packet size will be proportional to the number
of updated counters since the last confirmation, but it
is not affected by the number of updates of a particular
counter. The number of updates also has no effect on
the number of required network packets, making the
quadratic scale-up above less of a problem than it may
seem.

Additionally, counters with no updates on a par-
ticular node, after having its confirmed flag was set,

INeither to A nor to itself.



stay in state 2 in Figure In this state flush ()
causes no action, generating no network traffic at all.

4.4 Real-world Evaluation

There are a few seemingly obvious measurements that
can be done to evaluate how the protocol behaves
in real-world situations. First, we can measure the
number of function calls per second. However, as
all functions either just modify local data structures
or are asynchronous, this would effectively measure
just the CPU speed of our test machines. Second, we
could measure the time from when flush () is called
until the data has reached all other nodes. Unfortu-
nately, this just measures the round-trip time between
the nodes, and if £1ush () is called on node A, it does
not know when node B and node C have completed
their communication between each other. Third, we
could compare some performance aspect of the appli-
cation that originally triggered this work. Currently,
the best solution in that application is to use a repli-
cated MySQL server, but we have not found a way
to do the required multi-master replication with that
database with geo-separated nodes, and still get ac-
ceptable performance (at least 100 updates per sec-
ond, ideally closer to 1000).

We will instead compare our protocol with PN-
counters based on atomic broadcast. In particular, we
observed that for counters with updated data, most
algorithms for atomic broadcast use fewer commu-
nication steps and network resources than CReDiT
does. For other counters, CReDiT uses fewer. So,
we want to measure the relative frequency between
these two cases. From two production systems using
the motivating application mentioned above, we got
sample log files containing the time stamps of events
that would update one of our counters.

The first file covers an interval of 91 hours in the
middle of September 2021, with a total of 78987
events. Within this interval we observed the occur-
rence of events during each hour, but only during
3358 out of a total of 5460 minutes, and during 35 166
out of the total of 327 600 seconds. Despite an aver-
age of 0.241 events per second, there is an event only
during 10.7% of the seconds in this interval. The sec-
ond file covers 6 hours in August 2021, during which
there were 328 948 events, an average of 11.4 events
per second. Still, there was at least one event during
28357 of the included 28800 seconds (98.5%).

‘We do not have enough data points to find the most
fitting statistical distribution for the events handled by
the application, but it seems to be one of the uneven
ones, e.g. the exponential distribution discussed in
Section [2.3] The periods without any updates, where

CReDiT is maximally efficient, are therefore more
frequent than one perhaps could expect.

S DISCUSSION

According to Urbén et al. [Urban et al., 2000], hav-
ing a designated sequencer serializing all operations
in the system, uses the fewest number of communica-
tion steps per message, namely 2. The trade-off cost
to achieve this is that the sequencer node needs much
outgoing network bandwidth as it does a broadcast of
all messages to all other nodes. Most other atomic
broadcast protocols, e.g. Skeen’s protocol, need more
communication steps, but let each node broadcast its
own messages.

As we saw in Section 3] our proposed protocol
performs worse than this in both aspects, as it requires
up to 4 communication steps and that all nodes broad-
cast all messages. However, this is only true when
there has been an update. For periods of timeE] with-
out any updates, the protocol instead uses no commu-
nication at all.

The round-trip times between each pair of nodes,
i.e. whether the nodes are running within the same
data-center or are geographically separated, has little
or no effect on this protocol, for several reasons. First,
the updated data can be flushed at any suitable inter-
val, which just has to be longer than the maximum
round-trip time. By default, this interval is therefore
1 second. Second, as the data sent is the full new state
of each counter, the number of updates between each
flush does not affect the amount of data sent. Third,
as new data is directly available to each node after be-
ing received, a temporary delay on one link between
two nodes only affects those two specific nodes. This
also improves the reliability of the system, as there is
a greater possibility for updated values just before a
crash to be successfully received by the other nodes
than when multiple communication steps are needed.

The described approach works for any state-based
CRDT, as long as it is possible for receive () to de-
termine if the incoming values differ from the local
values.

In the first iterations of our protocol, we stored a
copy of the data sent to each other node. This worked
well, but would for larger CRDT objects lead to ex-
cessive memory usage. When these copies were re-
placed by the confirmed and force flags, the mem-
ory usage became both smaller and constant.

2The length of such a period depends on the resolution
of the sent_at field.



6 RELATED WORK

Almeida et al. [[Almeida et al., 2018|] address a
problem very similar to ours, presenting 3-CRDTs
which support both duplicated network packets just
as state-based CRDTs as well as achieving the lower
bandwidth requirements of operation-based CRDTs.
Their anti-entropy algorithm, corresponding to our
flush (), sends just the part of the state affected by
local operations performed on the current node. For a
CRDT with a large total state this d-state is typically
smaller than the full state replicated by state-based
CRDTs. We use the increased storage requirement for
the confirmed flag to eventually not having to send
any data at all.

One way to ensure that all servers has the same
data is to use a replication protocol which can “guar-
antee that service requests are executed in the same
order at all resource sites” [[Alsberg and Day, 1976].
The most common solution to this problem is to
model the system as a replicated state machine,
using a variant of Paxos [Lamport, 1998, Howard
and Mortier, 2020] or Raft [Ongaro and Ousterhout,
2014]. For the counters we need, the request order
does not matter. The implementation complexity and
network bandwidth required by these protocols are
therefore not needed.

Almeida and Baquero [Almeida and Baquero,
2019|] defined Eventually Consistent Distributed
Counters (ECDC), which is the same partition toler-
ant abstraction addressed in our work. Their solution,
called Handoff Counters, also works well over unreli-
able networks. Their counters aggregate the values in
a few central nodes, making them scale better accord-
ing to the number of servers than our solution does.
By creating a map of these counters, they would pro-
vide a reasonable solution for our resource counting.
However, the aggregation is rather complex, consist-
ing of a 4-way handshake and 9 data fields.

Skrzypczak et al. [Skrzypczak et al., 2019]] ad-
dressed the synchronization overhead of state ma-
chine replication by using a single network round-
trip for updates and not having a leader, just as in
this work. To get linearizability [Herlihy and Wing,
1990], their coordination is done by the query oper-
ations, using repeated round-trips until the returned
values stabilize. In contrast, we can accept both up-
dates and queries during all types of network parti-
tions, and can respond to queries without any network
round-trips.

Using Gossip also reduces the network usage, but
increases the number of communication steps until all
other nodes have the most recent data.

7 CONCLUSIONS

Generally, layered architectures are of course good,
reducing the complexity of each individual layer. In
the case of building state-based CRDTs on top of
atomic broadcast, we saw that the resulting system
can use unnecessary network and CPU resources. By
instead taking advantage of the lack of causality be-
tween the operations of our CRDT counters, we could
create a new protocol with lower network require-
ments during periods without any updates. Addition-
ally, its constant memory usage makes it suitable for
use in embedded devices and similar systems with
limited resources.
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