A Resilient Message Queue

Daniel Brahneborg, Romaric Duvignau
Wasif Afzal, Saad Mubeen

June 21, 2021

Abstract

In order to keep internet based services available despite inevitable local in-
ternet and power outages, their data must be replicated to one or more other loca-
tions. Incidentally, such replication also protects against data loss. However, for
store-and-forward systems with geographically separated system nodes, we have
not found one with sufficiently efficient network usage. The purpose of this work
is to propose a novel solution for replicating data in such systems. Leveraging
our application-specific semantics, such as a lack of relative order between repli-
cated data tuples, we designed a new replication protocol. We verified the failover
mechanism of our proof-of-concept implementation using simulated network fail-
ures, and evaluated it on throughput and latency in several controlled experiments
using up to 7 nodes in 5 geographically separated areas. When we increased the
number of nodes from 2 to 7, the system throughput increased as well, up to 24 562
messages per second (MPS). When the protocol was configured to replicate data
to nodes as nearby as possible, such as between New York and Toronto, instead of
always selecting random nodes, the total system throughput reached 40 149 MPS
for the same set of servers. This is, to the best of our knowledge, the first repli-
cation protocol with a total network usage that scales according to the number of
nodes allowed to fail and not to the total number of nodes in the system.

Contents
1 Introduction 3
1.1 SystemModel . . . .. ... ... ... .. 5
1.2 Example Application . . . . . . .. ... ... oL 6
2 Proposed Solution 7
2.1 Protocol Description . . . . . . .. .. ... 7
211 Startup . o.o. . e 8
2.1.2 Replication . . . . ... ... L oL 9
2.13 Failover . . . . . . . ... . 9
214 Exiting . . . ... 10
22 PeerLifeCycle . ... ... ... ... .. . .. . 10
2.3 DataTupleLifeCycle. . . . .. ... . ... ... ... . ..... 11



24 SourceCode . . . . . . . . .. e
2.5 Evaluation Environment . . . ... ... ... ... . ........

Reliability Analysis

3.1 Availability —Yield . . . ... ... ...
3.2 FaultTolerance —Harvest . . . . . . ... ... ... .........
3.3 Fault Tolerance — Duplication Analysis . . . . . . . ... ... ....

Failover Verification

4.1 ExperimentDesign . . . ... ... ... ... ... ... . ...
4.2 PFactorsand Variables . . . . . ... . ... ... oL
43 EXeCution . . . . . . ... e e e
44 Results. . . ... L
Throughput Evaluation
5.1 ExperimentDesign . . .. ... ... ... ... ... ....
5.2 Factorsand Variables . . . . . . ... ... .. ... ... ...
5.2.1 Independent Factors . . ... ... ... ...........
522 Constants . . . . . ...
5.2.3 Dependent/Response Variables . . . . ... ... ... ....
5.2.4 Ignored Response Variables . . . ... ... ... ......
53 Execution . . . . ... ...
54 Results. . . .. ...
Discussion
6.1 Threatsto Validity . . . . . . .. ... ...
6.1.1 Internal . . ... ... ... .. ...
6.1.2 External . . . .. ... ...
Related Work
7.1 Network Reliability . . . . ... ... ... ... .. .........
7.2 Replication Protocols . . . . . . ... ... .. ... ... . ...,

Conclusions and Future Work

13

13
13
15
16

17
19
19
20
20

29
29
29
30

30
30
30

31



1 Introduction

All over the world, various types of disasters happen with both regular and irregular
intervals [13,32,44,45]. These disasters, which could be both natural, technical and po-
litical, affect both network and power equipment, and therefore might lead to outages
for internet services [1,7,60]. Such outages can sometimes be mitigated by using mul-
tiple geographically separated servers [13,51,52, 58], to avoid single points of failure.
The servers exchange data with each other as necessary, allowing clients to connect
to any one of them. However, as the communication is limited by the speed of light,
we get round-trip times between the servers in the order of 1 ms per 100km [47]. A
reasonable minimal distance between servers to keep disasters from causing more than
one of them to fail might be in the order of 1000 km, limiting the number of round-trips
within the system to one hundred per second at best.

Maintaining the same data on multiple servers is not a new problem, and a common
solution is to send all information regarding the processed data to all of them [11]. Let
us here call this strategy “AllToAll”!. AlIToAll is often managed via a master server
as in Paxos [30, 39] or Raft [46], ensuring both that all data and its operations are
communicated to all servers, and that the operations are processed in the same order
everywhere [5].

The AllToAll strategy is easy to understand and reason about, and is implemented
in various concrete tools and libraries, e.g., Redis®> and Spread>. It forms the basis
for eventual consistency [56], and for Convergent and Commutative Replicated Data
Types (CRDTs) [53]. It is good for web applications and other request-response based
systems as it gives good availability for external readers, which can send the requests
to any one of the included servers and get reasonably current data in return. It also
makes resilience, as described by the ResiliNets project [44] at resilinets.org,
straightforward, as the system in case of a failed server can freely select one or more
of the remaining servers to take over its work [35].

However, AlIToAll has a number of shortcomings. It wastes network traffic [31,32],
as the amount of data grows quadratically by the number of servers in the system. All-
ToAll requires all servers to be able to reach each other, possibly going via one or
more other servers. When there is a network partition, in other words any type of fail-
ure causing this reachability to no longer be true, AlIToAll breaks [12,23,52], which in
turn reduces the system availability [4,16,20,26,52]. Considering the stability and life-
time of typical hardware, this level of redundancy is mostly unnecessary anyway [3].
We also know that the required coordination is costly [29,49], limiting the system per-
formance. Sharding is a technique for storing each data tuple on a predefined subset of
the nodes. This indeed decreases the network traffic, but it also lowers the availability,
as it limits the number of nodes where each particular data tuple can be stored.

Among others, Helland and Campbell in 2009 [27] and Hellerstein and Alvaro in
2019 [28], argued for shifting the focus from storage to application semantics. For
a specific application, there may exist solutions to the problem of geo-distributed re-

IPlease note that AlIToAll concerns the behavior on the application level. This may or may not use the
lower level construct Total Order Broadcast [17].

Zhttps://redis.io

3http://www.spread.org



silience which are more effective than AllToAll, and can therefore provide higher per-
formance.

In this work, we consider an application providing a message queue for mobile text
messages (SMS). The messages are added to the queue by senders, normally compa-
nies sending information to their customers, and are then pushed by the queue itself to
the network operators for final delivery to the mobile phones. After being forwarded
to the operators, the messages are removed from the queue. Due to the queue’s push
construct, there is no external reader pulling messages from it, and therefore we do
not need all nodes to receive the same set of data and operations on that data. The
messages are short lived within the queue, and could even be removed from the queue
before they have had time to be replicated everywhere according to the AllToAll strat-
egy. As each SMS is independent; we do not need the same operation ordering on all
nodes. Therefore, we need no mechanism for enforcing this order [55], and are even
free to store different subsets of the queue on each node [52]. Instead of the “all nodes
are equal”’-consistency provided by AllIToAll, we only need the system to be confluent,
as expressed by Alvaro [6]: “same set of outputs for all orderings of its inputs”, specif-
ically from the perspective of each recipient of the text messages. This strategy goes
back at least to an idea by Alsberg [5] in 1976: “Non-interaction may also occur with
writers if the data modified by each is disjoint”.

Using the scalability equation (1) by Gunther et al. [24], where n is the number of
nodes in the system, this intentional inconsistency between the nodes would remove
the otherwise necessary saturation, resulting in K = 0.

n
~ 14+on+xn(n—1)

With all the potential possibilities for higher performance mentioned above, the
purpose of this work is to design a replication protocol for a resilient message queue
with high efficiency, allowing disaster-resistant processing of 1000 or more messages
per second (MPS) per server.

The resulting design was evaluated using a proof-of-concept implementation, tested
on servers on multiple continents. Even on servers with modest performance, we
reached about 3500 MPS per node in the geo-diverse case, replicating all data tuples to
a random other server in the world. By allowing replication to the nearest server, e.g.,
between New York and Toronto, we instead got 5735 MPS per node.

We claim the following contributions in relation with this protocol.

Sn

ey

1. A high level description of its functionality.

2. An analysis of the reliability in terms of availability, potential data loss, and
potential data duplication.

3. A method to verify the failover mechanism.

4. A performance analysis on throughput, both when deployed within a local net-
work and for a geo-distributed system configuration.

“Messages to different recipients can of course be delivered in any order. Long messages consisting of
multiple parts can even be sent in any order to the recipient’s phone, as the parts are tagged with a sequence
number and will therefore always be merged together correctly in the phone.



5. An open-sourced implementation.

Following this introduction is a description of the assumptions we have made about
our system model, and a sample application context. Section 2 describes the proposed
protocol. Next follows evaluations of the protocol from three different perspectives.
First, Section 3 contains a theoretical analysis of the reliability. Then, Section 4 de-
scribes the verification of the failover mechanism, and finally Section 5 describes the
setup for the experiments conducted to evaluate its behaviour in a real-world configu-
ration, focusing on the quality attribute throughput. The results are discussed in Sec-
tion 6, and related work in Section 7. Section 8 holds conclusions and some ideas for
future work.

The main differences between the previously published conference paper [10] pre-
senting this protocol and this article is this new Introduction section focusing more on
resilience , the extension of the “Duplication Analysis” subsection into a more com-
plete Reliability Analysis in Section 3, the failover verification in Section 4, the added
experiment in Section 5.4, and an extended list of references.

1.1 System Model

Our system model is a classic store-and-forward queue [18], with external sets of pro-
ducers and consumers [19]. Data tuples, described in more detail below, are received
from the producers and stored in the queue. As soon as possible after they are received,
each data tuple is forwarded by the queue to one of the consumers. The data tuples are
therefore managed by the queue for a relatively short period of time, normally less than
1 second.

The ownership and responsibility of each data tuple travels along with the data.
This is in contrast to other store-and-forward based communication protocols such as
TCP, where the data stays with the original producer until the final consumer has ac-
knowledged its arrival. Our mechanism increases the burden on the queue to avoid data
loss, but lowers the amount of data the producer and the queue need to store. It also re-
moves the need for a reliable delivery notification from the consumer. Therefore, when
our queue acknowledges having received a data tuple, the producer removes their copy.
Likewise, when the consumer has received the data, it can be removed from the queue.

The part of the system we can control and manipulate in this model is just the queue
itself, which comprises a collection of n nodes, named node;, nodey, ..., node,. Each
node can exchange data with any other node, and may join and leave the system at any
time. The nodes are crash-recovery, so they may rejoin after crashing.

Nodes which are physically close, such as nodes running in the same data center,
may share a single point of failure, becoming unavailable due to the same power failure,
failed internet connection, etc. Replicating data to several such nodes therefore provide
no extra protection, but still requires additional costs in terms of power consumption,
network communication, CPU and disk usage. However, with geographically separated
nodes, the probability for some event killing multiple nodes during the processing of
a particular data tuple is effectively zero. Due to this, the communication between the
queue nodes is asynchronous.



Each producer and consumer is a third party system connected to one or more
queue nodes. We assume the producers can maintain a list of addresses to multiple
nodes they can use when sending their data tuples. However, we cannot change the
communication protocol used with these parties, nor anything else in their system.

In addition to n, the number of nodes in the system, we will use f for the number
of nodes which are allowed to fail at the same time without data being lost. This value
is typically 1 or 2.

Closely related to n and f is what we call “majority replication”, which we use
for all data replication protocols based on inequality (2) below. AllIToAll normally
uses number of writers = n and number of readers = 1, which trivially satisfies this
condition [2].

number of readers + number of writers > n 2)

The data tuples contain the following fields.
id A globally unique id.

payload
Opaque application specific payload.

owners
An ordered list of f + 1 unique node identifiers. The first node referenced in this
list is the one which originally received this tuple, and the remaining nodes are
the failover nodes for this specific data tuple.

Security concerns such as authentication and encryption are not part of the model.
There are also no byzantine failures [40], with nodes sending arbitrarily erroneous data.

1.2 Example Application

One of the application areas matching our system model is application-to-human mes-
saging, e.g. an SMS gateway. Such gateways are used by SMS brokers, connecting
clients via internet to mobile network operators. These clients are companies send-
ing authentication codes, meeting reminders and similar information. Using SMS for
these messages is convenient, as this technology makes it possible to reach all cus-
tomers without requiring any additional software on their mobile phones. Figure 1
shows a schematic view of this setup. In this use case, the replication would be done
between multiple SMS gateways belonging to the same SMS broker, without affecting
the protocols towards neither the client companies nor the operators.

We will use an SMS gateway for the motivation of various assumptions and de-
cisions throughout this paper. For example, n is in this context typically at most 10,
which is in the same order as in the evaluations of both S-Paxos [9] and PaRiS [54]. The
payload field in the data tuple consists of the sender’s and recipient’s phone numbers,
the message text, and possibly additional other information. The target throughput of
1000 MPS was selected to satisfy most existing SMS brokers and SMS sending com-
panies we have been in contact with.



A4
Y

Company 1 Broker [j Operator1 ——>

Company 2 Operator 2

Figure 1: Companies sending text messages, an SMS broker, and mobile network operators.

The network operators implement their own message queues, making the person
using the mobile phone the final consumer. This affects the delivery guarantees we
must support, as it is important that all messages are delivered as soon as possible,
but it is not a big problem if an occasional message is delivered twice. Similar to the
established terms “at most once” and “at least once”, we call this “once plus epsilon”
delivery. The term “at least once” allows any number of repetitions of each message,
but we want to minimize these.

Some operators even has a small filter, automatically ignoring duplicate messages.
They still incur a cost for the sender, again making it important to keep the number of
duplications as small as possible.

2 Proposed Solution

In this section we describe our proposed replication protocol, named GeoRep. It is
designed to be used on n nodes, of which f nodes can fail without data being lost. A
program, named ExampleApp, is running on each node, using a context independent
subsystem implementing the replication protocol.

The main data flows for a configuration with two nodes are shown in Figure 2.
A producer, of which there may be many, sends data to ExampleApp on one of the
nodes. The producers here correspond to the companies in Figure 1. ExampleApp
then tells GeoRep to store the data in its local persistent storage, and replicate it to the
other node. When ExampleApp has forwarded the data to a consumer, corresponding
to one of the operators in Figure 1, it tells GeoRep to delete the data on all nodes. The
GeoRep modules communicate with each other for replication and failure detection.
When a failed node has been observed, GeoRep tells ExampleApp to forward the data
tuples adopted from the failed node. So, ExampleApp does not know anything about
replication, and GeoRep knows neither of the producers nor the consumers.

2.1 Protocol Description

We here describe the activities done when GeoRep starts and stops, how data is repli-
cated, and how node failures are handled.



Producer

A

Data Tuple Storage

A

Data Tuple Storage

{ store ’,,.'-"'f'orward
node 1 : | ' node 2|
| : L = |
| ExampleApp E | ExampleApp i
Y : . !
' store | i | store | : i
| delete’ :2dopt ! | delete ! | adopt i
| N ! | N 3 i
! GeoRep <1:: ----- > GeoRep i

____________________________________________________________

Figure 2: Architecture overview for Example App running on two nodes.

2.1.1 Startup

At startup, the application layer in ExampleApp provides the selected value for f to its
GeoRep subsystem, and an initial list of other nodes. GeoRep then loads any previously
stored data tuples into appropriate data structures in memory. When that is completed,
it waits for contact requests, while also trying to make contact with the other nodes.

In response to a contact request from node,, GeoRep on the contacted node returns
a welcoming message with its list of currently known nodes. This list includes tem-
porarily stopped nodes and their expected return times (see Section 2.1.3, “Failover”,
below). The contacted node informs the others about node,, while node, tries to con-
nect to the existing nodes, getting their respective lists of known nodes. If any node
gets an update during this phase, the full list is broadcast to all other nodes. Eventually,
this will converge, from which point all nodes send periodic heartbeats [5] to all other
nodes unless other data has recently been sent.

If a node returns after a short time, each welcoming message will also contain the
list of entries adopted by each node. These entries can then be removed by the returning
node to reduce the number of duplications.



2.1.2 Replication

According to our system model described in Section 1.1, f nodes are allowed to fail
without causing data loss. At the very least, all received data tuples must therefore
be replicated to f additional nodes before the producer can get the corresponding ac-
knowledgement. However, as there is no requirement of keeping all nodes identical,
we do not need to replicate the data to more than f nodes. The replication algorithm
therefore becomes as follows.

1. The application layer in Example App requests some opaque data to be replicated.

2. GeoRep creates a list of f other nodes known to be alive out of the other n — 1
ones it knows about, putting this list in the owners field of the data tuple. If the
number of alive nodes is less than f, the operation is terminated immediately,
and a failure status is returned to the application. If this happens, the producer is
free to select another node to send the data tuple to.

3. The data, plus the owners field, is replicated to the f selected nodes.

4. Once all those nodes have responded, control returns to the application.

If multiple threads request entries to be replicated sufficiently close in time to the
same node, these are all sent as a single network packet. When receiving an entry from
another node, it is stored locally and a response sent back, but no other action is taken.
In particular, none of the received messages are forwarded at this point. Figure 3 shows
the replication when n = 5 and f = 2, for a message received by nodey, and the f other
nodes being nodes and nodey.

2.1.3 Failover

If nothing is received on node; from node, for some time, node; suspects node; to be
dead [41]. After this, no more entries are replicated from node; to node, until node,
sends something to node; again.

The reason for this lost connection may be a network outage, resulting in multiple
isolated subsets of the original n nodes still in contact with each other. Each network
partition with such a subset of at least f + 1 nodes can continue to run as before.

After some configurable time, or after the recovery timeout given by node, when it
exited, node, is considered dead. If node| ends up as the first node in the owners list for
one or more entries, the application running on node; is notified, one entry at a time.
The identifiers of the adopted and successfully sent entries are stored for a limited time,
making it possible to notify node, should it return.

As node; knows the identifiers of the rest of the nodes to which each entry was
replicated, it will try to inform those nodes about updated statuses. Only the nodes in
the owners list will ever send updates and deletes for a particular entry, and only to the
nodes originally stored in that list.



id: 42
payload: x
owners: 1,3,4

Figure 3: Replicate a payload to a subset of size 2 of the 5 known nodes, here nodes 3 and 4.
This payload is sent neither to node 2 nor node 5.

2.14 Exiting

When ExampleApp exits and tells GeoRep to shut down, this event is broadcast to all
other nodes, including a timeout for when the node expects to be back. This timeout is
also stored locally. The timeout tells the other nodes when they can start adopting that
node’s messages. If the original node comes back after the timeout has expired, it can
assume all of its messages have been adopted by the other nodes.

2.2 Peer Life Cycle

Figure 4 shows the states and transitions used by each node for each one of the other
nodes. Each node maintains its own list of states for these peer nodes, so all nodes can
take different decisions on which other nodes to replicate data to. This is intentional,
and an important feature of this replication protocol as it both avoids having to reach
consensus on this, and allows the protocol to continue to work even in case of partial
failures. As our model has crash-recovery nodes, there is no end state.

When a node is informed about the existence of a new peer, the new peer starts in
the Prospect state, causing the node to send it a greeting. When the peer replies with
some data, regardless of the current state, it is moved to the Active state. This is the
only state where it can receive new data tuples, and is marked with boldface.

When no data has been received for some time, the peer first moves to the state
Schrodinger, and after an additional time to the state Terminated. The timeouts when
moving to the Schrodinger and Terminated states are configurable, letting the applica-
tion select its sensitivity to timeouts. When a node knows it will be away for just a short
while, making any failover adoptions unnecessary, it can send a goodbye message to

10



send
greeting

c no data (S J
ontacted P Schrédinger

got data

Prospect

got data still no data

no data

got data

got data

Terminated

got data

Figure 4: The life cycle of each peer.

long timeout

got Goodbye

the other nodes which puts it in the Arnold® state. The failover logic is triggered when
moving to the Terminated state.

2.3 Data Tuple Life Cycle

Figures 5 and 6 illustrate the replication and failover from the perspective of a single
data tuple. The Inactive state has a dashed border to show that it is a passive state,
waiting on an externally initiated event. The solid arrows represent state changes on
the first node, and dashed arrows on the failover nodes.

First, in Figure 5, a producer sends the data tuple to some node, whereby the data
tuple enters the Received state. This corresponds to the arrow from Producer to node;
in Figure 3. Next, this node sets the owners field, and replicates the updated data
tuple to the selected failover nodes, where they are stored in the Inactive state. Also in
Figure 3, these are the arrows on the right, from node; to node; and nodes. When the
failover nodes have confirmed this operation, the data tuple on node; moves to state
Stored. It stays in this state until the application has forwarded the data.

In the normal case, the application will forward any data tuple in the Stored state,
and then move them to the Forwarded state. This instructs GeoRep to inform the
failover nodes, i.e., nodes and nodes in Figure 3, that this data should be deleted.
Finally, the data tuple is removed from the local storage in GeoRep on the first node as
well.

Figure 6 illustrates the cases later shown as B and C in Figure 8, when a failover
node discovers that all earlier nodes in the owners field no longer respond to its heart-
beat requests within the stipulated timeout. It then moves the data tuple from state
Inactive to Stored, and informs the application about this change. The life cycle then

STt will be back.

11



to first node

Received

. " to failover
replicate .
_ nodes
A
( . |
Stored i Inactive !
: on delete

delete
Forwarded Deleted

Figure 5: The life cycle of each data tuple on the first node.

from
. first
earlier »node
nodes ‘_

Figure 6: The life cycle of a data tuple in case of failover.

proceeds as above, causing the data tuple to be forwarded and then deleted on any re-
maining failover nodes. As described in Section 3.3, there is a possibility for the same
data tuple to enter the Stored state and therefore be forwarded by multiple nodes. We
do not need to create a mechanism to prevent that, as such duplication are acceptable
according to our requirements.

In both cases, the flow is monotonic [28] as there are no loops.

12



2.4 Source Code

The source code, consisting of about 3500 lines of C, is publicly available® This in-
cludes both the proof-of-concept implementation of the replication protocol and the
test application and scripts used in the evaluations in Sections 4 and 5. ZeroMQ’ is
used for the networking code.

2.5 Evaluation Environment

For the evaluations later in this paper, we used a total of thirteen servers in 2021, all
of them being the smallest ones offered by DigitalOcean® at that time: 1 GB mem-
ory, 25 GB disk, and 1 virtual x64 CPU. They all ran CentOS 7.9, with the working
directory on the filesystem XFS. The code was compiled using gcc 4.8.5.

3 Reliability Analysis

The quality model ISO 25010 [33] defines several characteristics for the evaluation of
a software product, each one separated into several sub-characteristics. In this section
we will focus on the Reliability characteristic, which contains the sub-characteristics
Maturity, Availability, Fault Tolerance and Recoverability. Discussing the maturity of a
new protocol does not seem meaningful, and the recoverability in terms of how GeoRep
handles a lost node was already discussed in Section 2.1.3.

For the evaluations of the availability and fault tolerance of the proposed protocol,
we will use the concepts yield and harvest, respectively, by Fox and Brewer [21]. In
Section 3.1 we discuss the availability in terms of the yield, i.e., how likely it is for a
producer to be able to find a node in the GeoRep system which accepts a new data tuple.
Next, in Section 3.2, we discuss the fault tolerance in terms of the harvest, seen as the
probability that the consumer will receive at least one copy of each data tuple. Finally,
the fault tolerance is again discussed in Section 3.3, now from the perspective of what
happens when the communication between two or more nodes fail for some reason,
and under which conditions the consumer will get at most one copy of a particular data
tuple.

3.1 Availability — Yield

The yield [21] for GeoRep is the probability for a client to be able to find a set of at
least f 4 1 (where f represents the number of nodes that are allowed to fail after data
has been received and acknowledged [41], as discussed above) mutually connected and
correctly functioning nodes.

To calculate this yield, we define a node-set as a set of nodes that can communicate
with each other. Each one of n nodes is either part of, or not part of, each such set,
giving a total of 2" sets. If a node has failed, it is put in its own node-set. As we

Shttps://bitbucket.org/infoflexconnect/leaderlessreplication
Thttps://zeromq.org
8https://digitalocean.con

13



only care about sets with a size of at least 2 (i.e. f+ 1, where f > 0), failed nodes are
automatically ignored in our calculations below. There are (Z) sets with size k, as that
is the number of ways to pick k nodes out of n. For example, consider the configuration
in Figure 3, where n = 5. The number of sets with sizes between 2 and 5 are then 10,
10, 5, and 1, respectively.

GeoRep can use all sets with a size of at least f + 1, which for f = 1 there are
104+ 10+ 541 = 26. In contrast, replication protocols which requires a majority of
the nodes to work [57] can only use those with a size of at least (n+ 1) /2, which for
n =5 becomes (5+1)/2 = 3. There are (g) + (i) + (g) = 10+5+1 = 16 such sets.
The protocols requiring fewer nodes than a majority [38,42] for a write operation to
succeed, achieve this by only allowing predefined node sets, so for n nodes there are
typically only n usable node sets. For protocols replicating all data to all other nodes,
only a single node set is allowed.

We illustrate the general case in Figure 7, using Pascal’s triangle, where the row
(starting at O, shown to the left) is the number of nodes in the system, and the values
in the triangle are the number of node-sets with a particular size. The list of 1’s along
the left side represents the single situation where all nodes are unavailable. The next
column on each row, where the value is the same as the number of nodes, represents
the cases where only a single node is available. Each following column represents
the cases with an increasing number of available nodes. Along the rightmost side are
finally the single cases where all nodes are available.

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1, Majority

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8 1

9 1 9 36 84 126 126 84 36 9 1
GeoRep

Figure 7: Number of node-sets usable by majority replication and GeoRep, for f = 1.

The node-sets usable by majority replication are the ones on the right part of Fig-
ure 7. As described above, GeoRep can use not only these node-sets, but also the ones
to the left except the ones in the first f + 1 columns.

The total number of node-sets for a particular value of n, is shown in Equation (3)
below. The ones usable by GeoRep are then shown by Equation (4). The number of
node-sets usable by majority replication are given by in Equations (5) and (6) for odd
and even values of n, respectively. For example, going from right to left on row 3, we
see that for 3 nodes we can use the single case where all nodes are available, and the
3 cases where 2 out of 3 nodes are available: 20"~1) =26-1) =22 —4 =1 +3.

The ratio between the number of sets usable by GeoRep and the ones usable by ma-
jority replication in the best case, is then given by the expression (7), which simplifies

14



to Equation (8). This value converges to 2 as n increases.

total =2" 3)
georep =2"—(n+1) 4)
majority_odd =21 5)
majority_even = 2n=1) _ ( " ) <majority_odd 6)
n/2
2" — 1
ratio > Iqeolrep = (n+1) @)
majority_odd 2(n=1)
n+1
—2- 22 ®)

Generally, we get:

=
eorep =2"— 9
georep k;) ( k) ©)

As the second term in Equation (9) is a polynomial, the second term in Equation (8)
will always converge to 0, making the ratio converge to 2 for all values of f. Assuming
the producer can connect to any of the system nodes, the availability is therefore about
twice as high as for other systems.

There are multiple strategies to use when selecting which of the node-sets to use,
for the situations when there are more than 1. The effect the selected strategy has on
the system throughput is examined in Experiment 2 in Section 5.4.

3.2 Fault Tolerance — Harvest

The harvest [21] is the probability that each data tuple inserted into the system still
exists to be output when needed. When this condition is true, the consumer will receive
at least one copy of the data tuple. Whether the output is the response to an incoming
query or forwarded by the system itself, as in our case, is not really important. For
GeoRep we can therefore define the harvest as the probability that at least one of the
nodes in the particular subset used for storing an individual data tuple is alive until the
data has been forwarded to the consumer (as shown in Figure 2).

This interval from when a data tuple is stored to when it is forwarded is typically
less than one second. If a node fails exactly once every 3 years the probability that it
happens in any particular second, which we denote as djj, is

1
dio =
57 37365-24-60- 60

~ 1078

(assuming each second is equiprobable”). When the node has been repaired or replaced
and then restarted, we reset the clock and assume it will run for up to 3 more years.

9This is of course a simplification, but we consider it to be an acceptable compromise in the interest of
understandability [3].

15



In the SMS use case, a client may send a large batch of messages faster than the
operator(s) can receive them. An operator may also be temporarily unavailable. The
resulting queues are typically cleared within a few hours, as the incoming traffic even-
tually'® slows down. The probability that the node that received the messages dies
within this time, say 3 hours, is

dyp=1-(1 —d15)3'60'60 ~ 1074,

As the nodes are geographically distant from each other, we can further assume
their failures are independent. The formula for the harvest as defined above, then sim-
ply becomes 1 —d/*!, for the relevant value of d. For the normal case when data is for-
warded within a second, we get a harvest for f = 1 of about 1 — 108U+ =1 — 10716,
a.k.a. “16 nines”. For data that stays in the system for 3 hours, we instead get a reli-
ability of 1 —10~*U+1) =1 —-1078 for f =1 and 1 —10~'2 for f = 2. SMS brokers
with systems where queues are frequent might therefore want to replicate to two other
nodes, but more than that is mostly just a waste of network bandwidth. Please also see
Table 3 in Section 4, where only one of the nine test cases required a forth node to be
available to avoid data loss.

For replication protocols using the AllToAll strategy, sending all data to all nodes,
we instead get a harvest of 1 —d". As n grows, this of course converges to even closer
to 1, but at the cost of significantly more data traffic.

3.3 Fault Tolerance — Duplication Analysis

We now consider the cases that can occur in the same situation as in Section 2.1.2,
when n =5 and f = 2, and a message is replicated from node; to nodes and node,.
The cases are shown in Figure 8. Neither node, nor nodes have ever heard of this
message, so whether they remain in contact with the other nodes has no effect here.

A. Aslong as node; is alive, it will try to deliver the message to the consumer, and
the statuses of the other nodes do not matter.

B. If nodes concludes that node; is dead or for some other reason unreachable, it
will adopt the message and try to deliver it. Here, the status of nodes4 does not
matter.

C. If nodeys loses contact with both node; and nodes, it will then try to deliver the
message itself.

There is no way for a node to know if any of the other nodes are dead or are
unreachable for another reason, e.g., being unusually slow [4,41]. In case multiple
nodes can communicate with the consumer but not with each other, messages could
therefore be duplicated. The probability for this is low, and these duplications are
therefore acceptable. We consider it much more likely that a lost node is dead or has
lost internet connectivity entirely, and thereby also the connectivity to the consumer.
In both of these two latter cases the message is delivered only once.

10There is a limited number of SMS recipients in the world, so barring client-side software faults, there
will never be an infinite stream of messages.

16



Consumer

Figure 8: Possible duplications.

4 Failover Verification

As we see it, the most important functionality that needs verification is that data tuples
inserted into the system are adopted and subsequently forwarded by another node if
the original node becomes unreachable. More specifically, a data tuple should only
be adopted by the first node in its owners list where all preceding nodes have become
unreachable.

For the verification of this functionality, we will construct a small set of test cases,
when taken together, provide good coverage of the various combinations of node fail-
ures that may occur. The idea, described in more detail in Section 4.1, is for each test
to start a set of nodes, insert a single data tuple, and then simulate the failure of zero,
one, or more of the nodes. Finally we will examine which node or nodes considers
themselves selected to forward this data tuple to the consumer, as shown in Figure 6 in
Section 2.3.

For the test case construction, we defined five different categories of nodes. At the
top level we had the nodes in the owners list plus the rest of the nodes. Of the owners,
we had one originator and a list of failover nodes, here called peers. Of those peers,
we distinguished between the first one, the ones in the middle, and the last one. These
three peer groups allowed at least one peer to have other peers before it in the owners
list, after it, and both.

Next, we assigned a number to each category as follows, and as shown in Table 1:
originator=1, first=2, middle=4, last=8, rest=16. Finally we created a sum of the values
representing nodes that had become unavailable. As the selected values are powers of
2, this sum can be seen as a bitmask, where the bit value 0 meant the nodes in this
category were still reachable, and 1 that they were not. For example, the bitmask
value 00001 = 1 meant only the originator was unreachable, and 01100 = 12 that the

17



originator and the first failover peers was still reachable, as well as the non-peer nodes
(in the rest group), but not any of the other failover peers. This way we got a set of 32
unique test cases, numbered from O to 31, providing a reasonable coverage of possible
server and network outages as each test case represented the situation where zero or
more nodes in each of these categories became unavailable to all other nodes.

Table 1: The five different node categories, and their assigned bitmask values.

originator 1

owners . first 2
failover peers | middle || 4

last 8
rest 16

Of the total set of 32 possible test cases, all even numbered ones mean the originat-
ing node is still alive and reachable. Therefore no adoption should occur in any of these
cases. Next, the test cases 1631 are the same as the cases 0-15, as the reachability
of nodes not in the owners list have no effect, regardless of how many they are. This
leaves us with just 9 distinct test cases, listed in Table 2. We note that in cases 0 and 15,
no adoption is made. In case 0, as there is no need for it, and in case 15, as there is
no owner left alive to do the adoption. Our system model, described in Section 1.1,
only guarantees that data will not be lost if at most f nodes become unavailable, not
that at most f nodes actually will. In case 15 there is simply an unfortunate subset of
f + 1 nodes being unavailable, corresponding exactly to the nodes storing the tested
data tuple, i.e., both the original node and all failover peers.

Table 2: Relevant tests cases.

Number Unreachable Adopter | Minimum f
0 = 00000 none none 1
1 originator first 1
3 originator and first middle 2
5 originator and middle first 3
7 originator, first and middle | last 3
9 originator and last first 3
11 originator, first, and last middle 3
13 originator, middle and last | first 2
15=01111 | all owners none 1

Finally, the test cases listed in Table 2 was mapped to concrete servers. This map-
ping is shown in Table 3, where nodes that should become unreachable are marked
with italics and nodes that should adopt the message(s) are marked with boldface.

The rest of this section contains the details regarding the implementation and exe-
cution of these test cases, as well as the results.

18



Table 3: Mapping test cases to servers, marking which ones should become unreach-
able and which ones should adopt the replicated data tuples.

Number | originator | first | middle | last
0 node; node; | nodes nodey
1 nodey node, | nodej nodey
3 node; node, | node; | nodey
5 nodey node, | node; nodey
7 node nodes nodes nodey
9 nodeq node, | nodej nodey
11 node; nodey | node; | nodey
13 nodeq node, | node; nodey
15 node; nodey nodes nodey

4.1 Experiment Design

The critical point for a data tuple is the transfer from Inactive to Stored, shown in
Figure 6 in Section 2.3, which in turn will trigger at least one of the nodes in the owners
list to hand the data tuple over to the application so it can ultimately be forwarded to
the consumer. To simulate this sequence of events, we created a test application that
performed the following steps.

1. Create a single data tuple.
2. Replicate the data tuple to all other nodes, and wait for confirmation.
3. Block all outgoing traffic from a selected subset of nodes, as specified in Table 3.

4. Wait some time to allow the blocked nodes to reach the state Terminated in Fig-
ure 4 in Section 2.2, triggering the data tuple adoptions.

5. Examine the log files created on each node, to see which node or nodes adopted
the data tuple.

4.2 Factors and Variables

For this evaluation, the only independent factor was the set of nodes which should be
made unavailable, and the only dependent variable was the set of nodes adopting the
data. Based on Table 3, all test cases in this section used n =4 and f = 3. We also used
a fixed peer order to ensure the roles of each node was predictable. Preliminary tests
showed that the number of clients and messages had no effect on the behaviour, so we
set both of these parameters to 1. As the adoptions were performed based entirely on
local information, the concepts of recovery time, time to elect a new leader and so on,
commonly evaluated for other replication protocols, were not relevant to us. This also
made it possible to run all tests in a local environment. The factors and variables are
summarized in Table 4 for an easy overview.

19



Table 4: Experiment factors for the failover evaluation.

Type Factor Value(s)/Unit
Independent || Disabled node(s) | None, 1, 2, 3, and/or 4
Servers, n 4
Protection, f 3
Constants No of clients 1
No of messages 1
Separation local
Dependent Adopter node number(s)
Ignored Recovery time seconds

4.3 Execution

The tests were implemented by adding a filter between the main GeoRep logic and the
ZeroMQ interface, making it possible on the application level to prevent any outgo-
ing traffic to one or more particular other peer nodes. A flag was added to GeoRep
to always replicate data tuples to nodes sorted in alphabetical order on their identi-
fier (“nodel”, “node2”, etc), making the behaviour predictable. A small shell script,
run-failover.sh, was used to ensure all executions used the correct parameters, and
that data was collected in the same way for all test cases.

4.4 Results

Table 5 shows the results for each one of the test cases. For test case 0, no node was
blocked, and therefore no adoptions by other nodes occurred. For the other test cases,
we notice that the correct node, as specified in Table 3, does indeed adopt the replicated
data.

Table 5: Failover results, showing blocked nodes and the ones adopting any data tu-

ples.

Number | node; node, node; nodey
0
1 blocked adopts
3 blocked | blocked | adopts adopts
5 blocked adopts blocked | adopts
7 blocked | blocked / adopts | blocked / adopts adopts
9 blocked adopts blocked / adopts
11 blocked | blocked | adopts adopts blocked | adopts
13 blocked adopts blocked / adopts | blocked / adopts
15 blocked | blocked | adopts | blocked / adopts | blocked / adopts

Except for node, all blocked nodes also adopt the replicated data tuples. The rea-
son for this is that as they are blocked, they never get any life signs from the other nodes
and therefore must consider these too to be unreachable. As discussed in Section 3.3,

20



this would however rarely lead to any data duplications. If a node cannot reach the
other nodes, it is simply not likely that it could still reach the consumers as shown in
Figure 2.

5 Throughput Evaluation

For an evaluation of the proposed protocol primarily focused on quality attributes, we
designed a controlled experiment [50], following the guidelines by Basili et al. [8]
and Pfleeger [48]. The overall goal was to evaluate the throughput in a few different
configurations.

5.1 Experiment Design

We used a sequence of tasks corresponding with the queue related operations per-
formed by the type of systems described as our system model in Section 1.1, resulting
in realistic experiments. We created a test application which created the messages it-
self, and discarded them when all tasks described below were completed. Due to the
nature of the experiment, we were able to use a fixed design [59].

1. A new message was stored locally and replicated according to the selected con-
figuration. The application waited for acknowledgements from the others servers
before returning control to the application.

2. A message was extracted from the queue.
3. The extracted message was deleted from all servers where it was stored.

A benchmark suite commonly used for evaluating replication systems is the Yahoo!
Cloud Serving Benchmark (YCSB) [15], which exists in several different variants with
varying proportions between writes and reads. Using the same suite makes it easy to
compare different solutions, but as it is designed for web server type systems and not
store-and-forward systems, YCSB was not meaningful for us.

5.2 Factors and Variables

In addition to the usual Independent and Dependent factors, we found it relevant to de-
scribe the independent factors that we set to constant values, and the dependent factors
which we chose to ignore. These are all described in more detail below, and summa-
rized in Table 6. The throughput was measured in messages per second (MPS).

5.2.1 Independent Factors

The primary factors in these experiments were selected to give a deeper understanding
of the behaviour under different circumstances.

The number of servers was varied from 2 to 7. The number of client connections
was varied between 1 and 1000. For clarity, only subsets of these intervals are shown
in the diagrams below.

21



Table 6: Experiment factors.

Type Factor Value(s)/Unit
Servers, n 2.7

Independent Clients. 1,3,10,..., 1000.
Separation Local, Geographical
Protection, f | 0, 1,2
Transient Ss

Constant

Steady-state | 30s

Throughput | MPS

Min RTT Microseconds, us
Recovering MPS
Duplications | Ratio

Dependent

Ignored

We used servers both within the same data center and in multiple time zones.
This way we could examine the effect the physical distances between the servers, and
thereby the different round-trip times, had on the system throughput. The data centers
used for the different numbers of servers, are shown in Table 7. The idea was to keep
the sites as geographically separated as much as possible. Only when using 6 or 7
servers did we use data centers relatively close to each other.

Table 7: Data centers used for the Geographical cases.

Data center Number of servers

2 1314 |5 |6 |7
San Francisco VIV IV iV |V
Toronto v
New York VIV IV IV I IV IV
London v IV
Amsterdam VIV IV IV I IV |V
Bangalore VIV I|Vv IV
Singapore VvV

We motivate setting the protection f to just 1 or 2 by recalling the discussion about
reliability in Section 3.2. For normal operations, where messages are forwarded within
the same second as they were received, even setting f to such a low value as 1 gives
a reliability of about 1 — 1071®. Replicating to a single other independent node is
therefore normally enough. To see the effect of replicating to a larger number of nodes,
which may be useful when the queues become long, we also ran the tests with f = 2.
To see the performance degradation caused by the replication logic, we ran a few tests
with f =0.

The reliability of the power and internet infrastructure is also relevant, but these
factors mainly affect the availability of the system, not its fault tolerance. We get high
availability by having a large number of possible node sets, and as we saw in Figure 7
in Section 3.1, the most effective way to increase the number of such sets is to increase

22



the number of nodes, n. This value is already selected as one of the independent factors.

5.2.2 Constants

All configurations were tested for 35 seconds. First, there was a transient phase of 5
seconds, allowing the CPU caches and TCP parameters to stabilize. Next, the applica-
tion continued to run in the steady-state phase for another 30 seconds.

5.2.3 Dependent/Response Variables

For all configurations, i.e. the combinations of one particular value for each of the in-
dependent variables, the response variable of most interest to us in this experiment was
the total system throughput. This throughput was defined as the number of messages
processed per second, according to the sequence of tasks described in Section 5.1.

We also measured the minimum RTT between each pair of nodes. The median
round-trip time would be more relevant for answering the question of what a typical
response time would be. However, as discussed in the Introduction, we are more inter-
ested in the system resilience, achieved by replicating the data tuples to nodes at some
minimum physical distance from each other. A large RTT clearly is no guarantee that
the nodes are far apart, but due to the finite speed of light, a small RTT requires the
nodes to be near each other.

5.2.4 Ignored Response Variables

Other response variables that might be of interest mainly concern the behaviour when
a failed server is detected, and the time-span afterwards during which the system is
reassigning messages to new Servers.

5.3 Execution

Before each test, all servers were reset to a known empty starting state. The files for
local storage were removed, so they could be recreated as needed. The application
was then started on all servers, with the selected values for the independent variables
provided as command line parameters.

The test application counted the number of messages processed each second by
each server, values that were then summarized into a result for the full system. Finally,
the median of the values for each of the 30 seconds in the steady-state phase was
calculated.

5.4 Results

Here we present a summary of the results from our throughput evaluations, made to
establish an initial intuition of how this protocol behaves. As mentioned, we varied
the number of servers up to 7, and the number of clients up to 1000, even though the
diagrams just show the results for representative subsets.

23



B 3clients A 30clients @ 300 clients

40

32384 33181

30

20

kMPS

3676 3447
996 1623 2073 w0 AT 4
A—— [ E— ST g
0
2 3 4 5 s =

number of servers

Figure 9: System throughput as a function of the number of servers, all running in the same data
center. Here, f = 1.

In a local network, the total system throughput increased with the number of nodes
up to 33 181 MPS on 7 nodes with 300 clients, shown in Figure 9. The minimum
RTT varied between 143 us and 420 us. When setting f = 2, as shown in Figure 10,
the throughput was similar given the same remaining factors, but consistently 20-40%
lower.

When GeoRep was deployed in a cluster of geo-separated servers, throughput again
increased with the number of nodes. The peak throughput levels were much lower than
in the local case, due to the longer round-trip times. For the same reason, the system
spent more time waiting for responses, lowering the CPU load. This allowed us to
increase the number of clients to 1000. Figure 11 shows how the throughput reached
7609 MPS for 2 nodes and 24 562 MPS for 7 nodes. As can be seen in Figure 12, when
setting f = 2 the throughput was again consistently lower than for f = 1.

In Figure 13 we see the performance hit resulting from the replication logic. The
entries for f = 0 show the case when not using any replication at all. Other than
occasional heartbeat traffic, the executed program code in GeoRep is just a very thin
layer on top of LevelDB. As expected, the throughput scales almost linearly by the
number of nodes, around 35-40 kMPS per node.

For 3 geo-separated nodes, the minimum RTT averaged 105ms. For 7 nodes, the
relatively distant nodes in Bangalore and Singapore resulted in an increase to 138 ms.
Figure 14 shows the RTT between a few selected pairs of nodes. For example, the RTT
from Toronto (in column 3) to New York is quite low, almost the same to San Francisco
and Amsterdam, and quite long to Bangalore. The profiles for nodes geographically
close to each other, e.g., New York and Toronto, are notably similar.

Based on Figure 14, we saw that instead of replicating messages to a random se-
lection of nodes, we could select the f ones with the smallest RTT from where the

24



B 3clients A 30clients @ 300 clients

30
26670
20
»
a
=
4
10
0
3 4 5 6 7
number of servers

Figure 10: System throughput as a function of the number of servers, all running in the same
data center. Here, f = 2.

A 1client @ 10clients 4 100clients == 1000 clients

20965 24562
12429 12814 15569
7609
10000
2202 2649
1201 1464 1317/_’15‘1/"’_.
— —e
«» 1000
o
- 219 262
120 145 138 162
100
23 26
12 14 15 -16 [ Vp— J\
______ e = = e == ——— = -
10 A
2 3 4 5 6 ;

number of servers, f=1

Figure 11: System throughput as a function of the number of servers, running in different data
centers on multiple continents. Please note that the Y axis is logarithmic, to match the logarith-
mic increase in the number of clients. Here, f = 1.

25



10000

1000

MPS

100

10

A 1client @ 10clients 4 100clients == 1000 clients

16635 19181
9097 10112 12261
1700 2102

1220 1078 iﬁf"/_._/—o

120 108 ;i()//’/.
—

18 20
12 11 12 A m —A
A mmm e Ammm—mmm o
3 4 5 6 7

number of servers, f=2

Figure 12: System throughput as a function of the number of servers, running in different data
centers on multiple continents. Please note that the Y axis is logarithmic, to match the logarith-
mic increase in the number of clients. Here, f = 2.

100

50

kMPS

10

Hf=0 Af1 @ f=2

............ T
........ PR
........ - - -
e -1
............ e
T ==
78971
7609 -
e
2 3 \ 5 6 |

number of servers

Figure 13: System throughput as a function of the number of servers, running in different data
centers on multiple continents, when varying f between O, 1, and 2. The number of clients is

1000.

26



® Amsterdam A San Francisco Bangalore x New York

300 ms
X
X
200 ms
A
[ A ¢
()
A
E
100 ms ° ®
X A A X
X
X
0ms e
é}%oo *0&* ‘0(&) Qboo ‘606\ ’b\O@) Qée
& ¢ <9 N &® s° &
N < & 32 2
P

Figure 14: Round-trip time (RTT) for various pairs of servers.

message was received, ignoring nodes with an RTT lower than some predefined limit,
say 10ms. This minimum value ensures messages are always replicated outside of the
critical region mentioned in the Introduction.

We set the number of servers to 7, and varied the number of clients between 100
and 1000. We varied the minimum RTT limit between 1, 20, and 100 ms, based on the
following reasoning. A minimum of 1 ms prevents a node from replicating to another
node within the same data center. This level protects from local internet and power
outages. The RTT between New York and Toronto, and between the nodes in Europe,
is around 10ms. By setting a minimum of 20 ms, these nodes must find peers further
away, such as the one in California or one across the Atlantic. This level protects
from larger outages covering bigger areas. When increasing the limit to 100ms, we
also prevent replication within the American continent and between the American east
coast and Europe. The data tuples are then always replicated at least about one third
of the total circumference of the earth. Increasing the limit further would not have any
practical application. With a larger number of nodes in more parts of the world, other
RTT limits would be meaningful, offering a larger number of tradeoff points between
throughput and reliability. The achieved throughput for the three tested cases are shown
in Figure 15 for f = 1, and in Figure 16 for f = 2.

27



kMPS

kMPS

50

10

m 100 clients A 300 clients @ 1000 clients == = target: 7000

40149 33315

oo :\\0\20249

L e
1osas —
............. SR
S

----- .
2257
1 . 100
Minimum RTT

Figure 15: System throughput for various minimum RTT limits, with f = 1.

50

10

m 100 clients A 300clients @ 1000 clients == = target: 7000

22008 20923
o 17631
+ ‘.
10116 A= m e e e 9800 —A==_
. m  m  m n mm h o h e h s s = s 5—8,59—i
| L ...
3839 3609 ................
..... -
1918
1 20 100
Minimum RTT

Figure 16: System throughput for various minimum RTT limits, with f = 2.

28



6 Discussion

In our experiments, the proposed protocol was shown to being able to leverage the
ordering independence of the data tuples and thereby perform better as the number
of clients, and thereby also the number of parallel requests, increased. As shown in
Section 5, the highest recorded throughput for the geo-distributed case was a bit over
33 000MPS when using 7 servers sufficiently far apart to avoid having more than 1
server fail due to a single power or network outage.

Figure 13 provides a way for us to calculate the implementation efficiency, where
there is room for improvement. Each node performs the same local Level DB operations
for data tuples replicated to them, so the theoretical maximum throughput are the values
for f =0, divided by f+ 1. The entries for f = 1 and f = 2 are from Figure 11 and
Figure 12, respectively, in both cases around 20-25% of this maximum. For example,
for 7 nodes we get an efficiency of 20% for f = 1 as shown in Equation 10, and 23%
for f =2 as shown in Equation 11.

24562

ffici S BN (7 10

SR T 45256/ (11 1) ? (10)
19181

ffici — 7% 3% 11

efficiency; 245256/(2 1 1) o an

A similar slowdown for higher values of f as is shown in Figure 13, can be seen
by comparing Figure 15 and Figure 16. The independence between the data tuples still
enables us to reach much more than our target 1000 MPS per node, as long as there are
sufficiently many clients.

Our design does not consider network partitions in general to be errors, so we
could therefore often avoid steps 2 and 3 of the D2R2 model from ResiliNets: detect
and remediate [44]. As was elaborated in Section 3, this gave us better resilience [22]
than what AllToAll systems could provide, as well as up to twice the availability.

6.1 Threats to Validity

The identified validity threats are grouped [14, 34] for better overview.

6.1.1 Internal

Internal validity threats concern the causal relationship between two variables. Even
though an existing SMS gateway was the driving force for the requirements addressed
by GeoRep, a new and minimal application was written for these experiments. This
avoided the threat of any confounding variables introduced by the gateway implemen-
tation and simplified the reproducibility.

In a production environment, the client applications will of course not run on the
same machine as GeoRep. Separating them will result in more time passing for the
client, between submitting a data tuple for replication, and getting the confirmation
back. On the other hand, it will leave more CPU to GeoRep, possibly increasing its
performance for the CPU bound parts.

29



To address the threat of additional confounding factors, all cases were run for a
relatively long time. As we focused on the median, any temporary variances in the
environment were effectively filtered out.

6.1.2 External

External validity threats concern whether the results are still valid in a more general
context. Due to not having a coordinating server, our proposal is only usable for situa-
tions where the stored elements have no relative order. Applications where this is true
besides SMS gateways, are email gateways. These gateways also route messages from
companies to their customers, but instead of delivering messages to network operators,
they are delivered to email servers and ultimately to the customers’ mailboxes. Here
too, the relative order between messages does not matter, there are no reliable end-to-
end acknowledgements,'! and each message is important to its recipient. The quality
requirements for these systems are indeed similar to the ones for SMS gateways, as the
system must provide high availability to the senders, and as messages must not get lost
despite temporary failures of both system nodes and recipient systems.

7 Related Work
7.1 Network Reliability

Kleppman presented some critique of the CAP theorem, offering an alternative frame-
work [36] using the terms “Availability”, “Delay-sensitive”, “Network faults”, “Fault
tolerance” and “Consistency”. This would be more suitable for practitioners, separat-
ing meaningful delays which are typically very short, from “eventually”, which may
be anything less than infinity. Even though we do not use that framework in our work,
it supports our claim that there is a need for, and room for, models and frameworks

which are closer to the practical reality than what CAP suggests.

7.2 Replication Protocols

Other store-and-forward systems are application-to-application message queues, €.g.
Apache Kafka [37]. In Apache Kafka the data in the system can be spread over multiple
subsets of the nodes, with each such subset being called a partition. A partition has an
elected leader, which handles all reads and writes, and zero or more replicas which are
kept in sync using a very efficient mechanism. Should the leader become unavailable,
one of the replicas takes its place. This gives an automatic ordering of the events, but
at the cost of being sensitive to the network latency between the client and the replica
leader. GeoRep avoids this cost, as it has no leader. Instead, clients are free to connect
to any node of their choice, thereby minimizing the latency time and as a result maybe
also maximizing the throughput.

TA common workaround for emails are tracking pixels, but these are usually possible to disable on the
client side. Some email services, e.g., hey.com, see them as a threat to privacy and explicitly blocks them.

30



For systems where a global ordering must be maintained, the replication protocols
are often based on a variant of Paxos [39] or Raft [46], recently proven by Howard and
Mortier to be functionally identical [30]. The Paxos variant Mencius [43] was designed
to perform well even in wide-area networks with high inter-node latency. One of the
ways they achieve this is by using a multi-master setup, where the leadership is divided
among all nodes similarly to GeoRep. However, as all data is sent to all other nodes,
the throughput does not increase when nodes are added to the system.

Even in cases where the bandwidth is not the primary issue, such as between the
cores within the same CPU, coordination has a significant cost. Qadah and Sadoghi
demonstrated this with their key-value store QueCC [49]. The round-trip times between
CPU cores is of course several orders of magnitude smaller than between servers in
different data centers or time zones, but the coordination between the servers is still so
costly that by avoiding it, QueCC is about 5 times faster than comparable systems.

Many of the data replication protocols are based on total order broadcast [17],
which also requires all data to be processed by all nodes in the same order. This makes
the situation easier for the upper layers of the protocol, but can never lower the band-
width requirements. When the data payload is big enough to make the system network
bound, throughput therefore instead notably decreases.

A naive solution would be to store the data tuples in an SQL database, where there
are plenty of replication methods. However, as SQL databases must maintain the ACID
(Atomicity, Consistency, Isolation, and Durability) [25] properties of the data, those
methods work best within a local server cluster. With geo-separated servers, the higher
round-trip times cause a significant performance degradation. Comparing GeoRep with
an SQL database, given the same operations, would therefore not be fair.

8 Conclusions and Future Work

With the purpose of increasing the reliability of a store-and-forward system, we de-
signed a solution based on application semantics instead of lower level storage opera-
tions [27,28]. We took advantage of the lack of a relative order between the data tuples,
and that not all data tuples had to be replicated to all servers. This not only allowed us
to achieve the desired reliability while maintaining sufficient throughput, but also gave
almost twice the system availability compared to other replication protocols.

Naturally, we welcome replication studies of this protocol. The experiments can be
varied along several different dimensions, e.g., a) using other programming languages
than C, b) using other frameworks than ZeroMQ, c) using a larger number of nodes,
d) separating the client applications into separate nodes, €) and considering other use
cases and application areas. The source code used in the experiment is open sourced to
facilitate such studies.

There is no consensus among the nodes regarding the reachability of the other
nodes, so the number of use cases for the failover verification in Section 4 is actually
higher than 9, and increases with higher values of f. A deeper analysis to find the
exact formula for which of these test cases involving the reachabilities from multiple
nodes can actually occur, their expected outcome, and comparing this with the actual
behaviour, would be interesting, but is left as future work.

31



For predictable disasters [45], e.g., hurricanes, floods and tsunamis, we should be
able to temporarily disable some servers beforehand as replication targets, to minimize
data loss. The same strategy could even be used for more unpredictable disasters caus-
ing power failures, in those cases triggered by the affected nodes switching to battery
power.

Acknowledgements

This work was sponsored by The Knowledge Foundation industrial PhD school ITS
ESS-H, H2020 project ADEPTNESS (871319) and Braxo AB. Thanks to Per Erik
Strandberg and Daniel Flemstrom for assistance with the mathematics.

References

[1] Giuseppe Aceto, Alessio Botta, Pietro Marchetta, Valerio Persico, and Antonio
Pescapé. A comprehensive survey on internet outages. Journal of Network and
Computer Applications, 113(2018):36-63, jul 2018.

[2] M. Ahamad and M.H. Ammar. Performance Characterization of Quorum-
Consensus Algorithms for Replicated Data. IEEE Transactions on Software En-
gineering, 15(4):492—496, apr 1989.

[3] Peter A. Alsberg. Research in Network Data Management and Resource sharing,
1976.

[4] Peter A. Alsberg, Geneva G. Belford, Steve R. Bunch, John D. Day, Enrique
Grapa, David C. Healy, Edwin J. McCauley, and David A. Willcox. Research in
Network Data Management and Resource Sharing, Synchronization and Dead-
lock. Technical report, Center for Advanced Computation, University of Illinois,
1977.

[5] Peter A. Alsberg and John D. Day. A Principle for Resilient Sharing of Distributed
Resources. In Proceedings - International Conference on Software Engineering,
ICSE. IEEE Comput. Soc. Press, 1976.

[6] Peter Alvaro. Data-centric Programming for Distributed Systems. PhD thesis,
EECS Department, University of California, Berkeley, Dec 2015.

[7] Peter Bailis and Kyle Kingsbury. The Network is Reliable. Communications of
the ACM, 57(9):48-55, sep 2014.

[8] Victor R. Basili, Richard W. Selby, and David H. Hutchens. Experimenta-
tion in software engineering. IEEE Transactions on Software Engineering, SE-
12(7):733-743, 1986.

[9] Martin Biely, Zarko Milosevic, Nuno Santos, and André Schiper. S-paxos: Of-
floading the leader for high throughput state machine replication. In Proceedings
of the IEEE Symposium on Reliable Distributed Systems, 2012.

32



[10] Daniel Brahneborg, Wasif Afzal, Adnan Causevic, and Mats Bjorkman. Super-
linear and bandwidth friendly geo-replication for store-and-forward systems. In
15th International Conference on Software Technologies, July 2020.

[11] Susanne Braun and Stefan Desloch. A Classification of Replicated Data for the
Design of Eventually Consistent Domain Models. In International Conference
on Software Architecture Companion, ICSA-C. IEEE, 2020.

[12] Eric A Brewer. Towards Robust Distributed Systems. In Principles Of Distributed
Computing. ACM, 2000.

[13] Yufei Cheng, M Todd Gardner, Junyan Li, Rebecca May, Deep Medhi, and
James PG Sterbenz. Analysing GeoPath diversity and improving routing per-
formance in optical networks. Computer Networks, 82:50-67, 2015.

[14] Thomas D Cook and Donald Thomas Campbell. Quasi-experimentation: Design
and analysis for field settings, volume 3. Rand McNally, Chicago, 1979.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Rus-
sell Sears. Benchmarking cloud serving systems with YCSB. In Proceedings of
the ACM symposium on Cloud computing, SoCC 10, New York, NY, USA, 2010.
ACM.

[16] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Consistency in Par-
titioned Networks. ACM Computing Surveys, 17(3):341-370, September 1985.

[17] Xavier Défago, André Schiper, and Péter Urban. Total order broadcast and mul-
ticast algorithms. ACM Computing Surveys, 36(4):372-421, 2004.

[18] Edsger Wybe Dijkstra. Co-operating sequential processes. In Programming lan-
guages. Academic Press Inc, 1968.

[19] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-
marrec. The many faces of publish/subscribe. ACM Computing Surveys,
35(2):114-131, 2003.

[20] Michael J. Fischer and Alan Michael. Sacrificing Serializability to Attain High
Auvailability of Data in an Unreliable Network. In Proceedings - ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, PODS, 1982.

[21] Armando Fox and Eric A. Brewer. Harvest, Yield, and Scalable Tolerant Systems.
In Proceedings - Workshop on Hot Topics in Operating Systems, HOTOS. IEEE,
1999.

[22] Ivan Ganchev, Jacek Rak, Tibor Cinkler, and Mairtin O’droma. Taxonomy of
schemes for resilient routing. In Guide to Disaster-Resilient Communication Net-
works, pages 455—482. Springer, 2020.

[23] Seth Gilbert and Nancy A. Lynch. Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services. In Principles Of Dis-
tributed Computing, PODC, 2004.

33



[24] Neil Gunther, Paul Puglia, and Kristofer Tomasette. Hadoop superlinear scalabil-
ity. Queue, 13:20-42, 5 2015.

[25] Theo Haerder and Andreas Reuter. Principles of transaction-oriented database
recovery. ACM Computing Surveys, 15(4):287-317, 1983.

[26] Coda Hale. You can’t sacrifice partition tolerance. Retrieved May 2020, 2010.

[27] Pat Helland and Dave Campbell. Building on quicksand. In Proceedings - Con-
ference on Innovative Data Systems Research, CIDR. ACM, 2009.

[28] Joseph M Hellerstein and Peter Alvaro. Keeping calm: when distributed consis-
tency is easy. arXiv preprint arXiv:1901.01930, 2019.

[29] Joseph M. Hellerstein and Peter Alvaro. Keeping calm. Communications of the
ACM, 63, 8 2020.

[30] Heidi Howard and Richard Mortier. Paxos vs raft: Have we reached consensus
on distributed consensus? In Proceedings of the 7th Workshop on Principles and
Practice of Consistency for Distributed Data, 2020.

[31] David Hutchison and James P.G. Sterbenz. Architecture and design for resilient
networked systems. Computer Communications, 131:13-21, 10 2018.

[32] Farabi Igbal and Fernando A Kuipers. Disjoint paths in networks. Wiley Ency-
clopedia of Electrical and Electronics Engineering, pages 1-11, 1999.

[33] ISO. ISO/IEC  25010. https://1s025000.com/index.php/en/
150-25000-standards/1is0-25010, 2021. Accessed 2021-04-06.

[34] Andreas Jedlitschka, Marcus Ciolkowski, and Dietmar Pfahl. Reporting exper-
iments in software engineering. In Guide to advanced empirical software engi-
neering, pages 201-228. Springer, 2008.

[35] Paul R Johnson and Robert H Thomas. RFC 677: The Maintenance of Duplicate
Databases, 1975.

[36] Martin Kleppmann. A Critique of the CAP Theorem, 2015.

[37] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: a Distributed Messaging System
for Log Processing. In Proceedings of the SIGMOD Workshop on Networking
Meets Databases, NetDB, Athens, Greece, 2011.

[38] Akhil Kumar. Hierarchical Quorum Consensus: A New Algorithm for Managing
Replicated Data. IEEE Transactions on Computers, 40(9):996-1004, 1991.

[39] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Sys-
tems, 16(2):133-169, May 1998.

[40] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gen-
erals problem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(3):382-401, July 1982.

34



[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

Bruce G Lindsay, Patricia G Selinger, Cesare Galtieri, James N Gray, Raymond A
Lorie, Thomas G Price, Franco Putzolu, Irving L Traiger, and Bradford W Wade.
Notes on Distributed Databases. 1BM Thomas J. Watson Research Division,
1979.

Mamoru Maekawa. A /N Algorithm for Mutual Exclusion in Decentralized
Systems. ACM Transactions on Computer Systems, 3(2):145-159, 1985.

Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Building Effi-
cient Replicated State Machines for WANSs. In USENIX Conference on Operating
Systems Design and Implementation, OSDI, Berkeley, CA, USA, 2008.

Andreas Mauthe, David Hutchison, Egemen K Cetinkaya, Ivan Ganchev, Jacek
Rak, James PG Sterbenz, Matthias Gunkelk, Paul Smith, and Teresa Gomes.
Disaster-resilient communication networks: Principles and best practices. In
International Workshop on Resilient Networks Design and Modeling, RNDM.
IEEE, 2016.

B. Mukherjee, M. F. Habib, and F. Dikbiyik. Network adaptability from disaster
disruptions and cascading failures. IEEE Communications Magazine, 52(5):230—
238,2014.

Diego Ongaro and John K Ousterhout. In Search of an Understandable Consensus
Algorithm. In USENIX Annual Technical Conference, 2014.

Roberto Percacci and Alessandro Vespignani. Scale-free behavior of the inter-
net global performance. The European Physical Journal B, 32(4):411-414, Apr
2003.

Shari Lawrence Pfleeger. Experimental design and analysis in software engineer-
ing, part 2. ACM SIGSOFT Software Engineering Notes, 20(1), 1995.

Thamir M. Qadah and Mohammad Sadoghi. QueCC: A Queue-oriented, Control-
free Concurrency Architecture. In Proceedings of the International Middleware
Conference, Middleware * 18, New York, NY, USA, 2018. ACM.

Colin Robson and Kieran McCartan. Real world research. John Wiley & Sons,
2016.

Justin P Rohrer, Abdul Jabbar, and James PG Sterbenz. Path diversification for fu-
ture internet end-to-end resilience and survivability. Telecommunication Systems,
56(1):49-67, 2014.

James B Rothnie and Nathan Goodman. A Survey of Research and Development
in Distributed Database Management. In Proceedings - International Conference
on Very Large Data Bases, 1977.

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. A compre-
hensive study of Convergent and Commutative Replicated Data Types. Technical
Report RR-7506, Inria — Centre Paris-Rocquencourt, 2011.

35



[54]

[55]

[56]

[57]

(58]

[59]

[60]

Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. PaRiS: Causally Con-
sistent Transactions with Non-blocking Reads and Partial Replication. In IEEE
International Conference on Distributed Computing Systems, ICDCS. IEEE, jul
2019.

Michael Stonebraker and Eric Neuhold. A Distributed Data Base Version of In-
gres. Technical report, California University, Berkeley., 1976.

D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, and
C. H. Hauser. Managing update conflicts in bayou, a weakly connected replicated
storage system. SIGOPS Oper. Syst. Rev., 29(5):172-182, December 1995.

Robert H Thomas. A majority consensus approach to concurrency control for
multiple copy databases. ACM Transactions on Database Systems (TODS),
4(2):180-209, 1979.

Balazs Vass, Janos Tapolcai, David Hay, Jorik Oostenbrink, and Fernando
Kuipers. How to model and enumerate geographically correlated failure events
in communication networks. In Guide to Disaster-Resilient Communication Net-
works, pages 87-115. Springer, 2020.

Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell, and
Anders Wesslén. Experimentation in software engineering. Springer Science &
Business Media, 2012.

Mazin Yousif. Cloud Computing Reliability—Failure is an Option. IEEE Cloud
Computing, 5(3):4-5, may 2018.

36



